

Objective

- Self-teach to **discover** and disentangle **object attributes** from videos **without** using any **labels**.
- Use of **online adaptation**: the longer our online model looks at objects in a video, the lower the object identification error.
- Explore system **free of human supervision** for robotics applications. A **robot** collects its own data, trains on it, and then **identifies objects**.

Frame m

Approach

- Detect and **embed objects** to **extract** their **features**.
- Use metric loss to contrast similar and dissimilar **objects** in embedding space.
- **Observing objects** across different views **facilitates learning invariance** to scene-specific properties, such as scale, occlusion, lighting, or background.

Online Object Representations with Contrastive Learning in Videos

Soren Pirk, Mohi Khansari, Yunfei Bai, Corey Lynch, Pierre Sermanet

By **attracting** nearest neighbors in embedding space and **repulsing** others using **metric learning**, continuous object representations naturally emerge.

Datasets

Real Data for Online Training (Complex Scenes, Epic Kitchens)

Automatic Real Data Collection with Robot

Synthetic Data for Evaluation

Experiments

Online Object Identification (red boxes indicate mismatches)

Self-supervised **online training** enables adapting to unseen objects, important for robotic agents.

Object Attribute Classification: Comparison to Baselines

	Class (12) Attribute	Color (8) Attribute	Binary Attributes	Embedding
Method	Error	Error	Error	Size
[BL] Softmax	2.98%	0.80%	7.18%	-
[BL] OCN sup (linear)	7.49%	3.01%	12.77%	32
[BL] OCN sup (NN)	9.59%	3.66%	12.75%	32
[ours] OCN unsup. (linear)	10.70%	5.84%	13.76%	24
[ours] OCN unsup. (NN)	12.35%	8.21%	13.75%	24
[BL] ResNet50 embed. (NN)	14.82%	64.01%	13.33%	2048
[BL] Random Chance	91.68%	87.50%	50.00%	-

Paper and Videos available here: https://online-objects.github.io/

View to View Correspondence (nearest neighbors, same scene)

Anchors Positives Distances Negatives \longrightarrow Objects of View 2

Feature Alignment (nearest neighbors, dataset)

Our approach allows to **organize objects** along their visual and semantic properties.

Robotic Pointing

Point at **object** that is **most similar** to the one shown.

Conclusion

Self-supervised online learning of object representations, particularly useful for **robotics** to increase robustness and adaptability to **unseen objects**.

